Time course of adult castration-induced changes in soma size of motoneurons in the rat spinal nucleus of the bulbocavernosus.
نویسندگان
چکیده
The spinal nucleus of the bulbocavernosus (SNB) innervates striated muscles, the bulbocavernosus and levator ani (BC/LA), which control penile reflexes. Castration results in shrinkage in the size of SNB somata and dendrites, as well as BC/LA muscle mass. However, there is no information about how quickly these regressive changes occur compared to the rapid effects of castration upon penile reflexes, which are greatly diminished a few days after surgery. Therefore we examined the time course of change in the size of SNB somata after castration of adult male rats. Males were sacrificed 2, 14, or 28 days after either castration or sham surgery and somata were measured in the SNB and in a control population of motoneurons, the retrodorsolateral nucleus (RDLN). BC/LA weight was reduced in castrates compared to intact males 14 and 28 days post surgery, but SNB somata were significantly smaller in castrates only at 28 days after surgery. As has been previously observed, castration did not affect soma size in the RDLN. These data indicate that SNB somata respond more slowly after castration than BC/LA mass or penile reflexes, suggesting that the size of SNB somata cannot account for the loss of penile reflexes. Androgenic effects on SNB somata may contribute to aspects of reproductive behavior that are not apparent in penile reflexes tested ex copula.
منابع مشابه
Time Course of Axotomy-induced Changes in Synaptophysin Pattern and Synaptic Reaction of Spinal Motoneurons in Adult Rat
Background and Objective: Evaluation of degenerative changes of motoneurons and their related synapses can be useful in understanding the mechanisms of neurodegenerative diseases and their potential treatment. The present electron microscopic and immunohistochemical study investigates the axotomy-induced...
متن کاملAndrogen-sensitivity of somata and dendrites of spinal nucleus of the bulbocavernosus (SNB) motoneurons in male C57BL6J mice.
In rats, androgens in adulthood regulate the morphology of motoneurons in the spinal nucleus of the bulbocavernosus (SNB), including the size of their somata and the length of their dendrites. There are conflicting reports about whether androgens exert similar influences on SNB motoneurons in mice. We castrated or sham-operated C57BL6J mice at 90 days of age and, thirty days later, injected cho...
متن کاملEvidence that androgen acts through NMDA receptors to affect motoneurons in the rat spinal nucleus of the bulbocavernosus.
In adult male rats, spinal nucleus of the bulbocavernosus (SNB) motoneurons shrink after castration and are restored in size after androgen treatment. Sixty-day-old Sprague Dawley males were castrated and implanted with SILASTIC capsules containing testosterone (T) or nothing, and osmotic minipumps continuously infusing MK-801, a noncompetitive NMDA receptor antagonist, or saline. Twenty-five d...
متن کاملNeuronal size in the spinal nucleus of the bulbocavernosus: direct modulation by androgen in rats with mosaic androgen insensitivity.
The motoneurons of the spinal nucleus of the bulbocavernosus (SNB) and its target muscles, the bulbocavernosus and levator ani, form a sexually dimorphic circuit that is developmentally dependent on androgen exposure and exhibits numerous structural and functional changes in response to androgen exposure in adulthood. Castration of male adult rats causes shrinkage of SNB somata, and testosteron...
متن کاملCiliary neurotrophic factor receptor alpha in spinal motoneurons is regulated by gonadal hormones.
Ciliary neurotrophic factor receptor alpha (CNTFRalpha) is the ligand-binding component of the CNTF receptor. CNTFRalpha expression is essential for the normal development of spinal motoneurons and is required for the development of a sex difference in motoneuron number in androgen-sensitive perineal motoneurons. We used immunocytochemistry to examine the expression and hormone regulation of CN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience letters
دوره 454 2 شماره
صفحات -
تاریخ انتشار 2009